5.2 The Square Potential Barrier

We consider a one-dimensional potential barrier of finite width and height given by
")
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We have a particle of mass m incident on the barrier from the left with energy E. According to

classical mechanics, the particle would always be reflected back if E < V, and would always be
transmitted if E > V.
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Let us divide the whole space into three regions: Region | (x < 0), Region Il (0 <x < a) and
Region Il (x > a).

In regions | and 11 : the particle is free andso the time-independent Schrédinger equation is
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The general solution of this equation is
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Forx < 0,

e Ae'™ corresponds to a plane wave of amplitude A incident on the barrier from the left
e Be~**corresponds to a plane wave of amplitude B reflected from the barrier.

Forx < a,

e Fe'™* corresponds to a transmitted wave of amplitude F.
e (G = 0 because no reflected wave is possible in this region.



In region Il: the Schrodinger equation is
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Since E > V,, the quantity k'? is positive. Therefore, the general solution of this equation is,
wix)=Ce*  + De™ 0<x<a
The complete eigenfunction is given by
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Schematic plots of the real parts of the barrier eigenfunctions for

@E >Vyand (b) E < V,.

Continuity of y(x) and dwi(x)/dx at x = 0 and x = a gives

A+B=C+D ...(5.24)

ik (4 — B) =ik’ (C — D) ...(5.25)

Ceﬂ"ﬂ _De—rk'a _ Fer'ﬂ'a (526)

ik’ (Ce** — De™*%) = jkFe™ ...(5.27)

From (5.24) and (5.25) we obtain
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= ﬁ [C(k - k') + D(k + k)] ...(5.29)

From (5.26) and (5.27) we obtain
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Dividing (5.31) by (5.30)
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On substitution for D /C from (5.32), this becomes
B _ (K-k)a-¢&") ...(5.33)
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We need a similar expression for F/A. Equations (5.24) and (5.25) yield
1
C = Y [A(k + k') — B(k — K)]

Substituting in (5.30)
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Simplifying, we obtain
F 4kk’e'" 0" ..(5.34)
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The reflection and transmission coefficients are, respectively,
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It can be easily shown that, as expected,
R+T=1

The perfect transmission

..(6.37)

L1
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In region I (x <0) and 1l (x > a), the Schrédinger equation and its solution remain the same as
in case 1.

In region Il (0 < x < a) the Schrédinger equation is

TV _ gy =0, 2= 2105 ...(5.38)
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Therefore, the eigenfunction in region II is

wix)=Ce® + DX 0<x<a ...(5.39)

The real part of the complete eigenfunction for E < V,, is shown in above Figure.

The reflection and transmission coefficients can be immediately obtained if we replace k' by iK
in (5.35) and (5.36). Remembering that sin ix = i sinh x, we obtain
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It is again readily verified that R + T = 1. We note that T — 0 in the limit E — 0.

For a broad high barrier, Ka >> 1. This is true for most cases of practical
interest. We may take sinh Ka = exp(Ka)/2. In that case,
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Problem 3: Obtain Equation (5.42) from Equation (5.41).

Solution: 1f Ka >> 1, then sinh’(Ka) >> 1.

Therefore, Equation (5.41) reduces to
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Substituting in the above equation

o 4K [ 2 ]3 _ 4E(VD—E)[ 2 )3

or T=[ 4K ) g2xa— VEWo—E) o,

P+ K vy

Problem 4: Electrons of energy 2 eV are incident on a barrier 3 eV high and 0.4 nm wide.
Calculate the transmission probability.
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Solution: Transmission probability T = [1+ Vo sinh (K”):|

4E (Vy— E)
Here Vo —E=03.0-20)=1eV=16x10"7
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= 2.045
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T=[1+ 1.125 x (3.805)]""

=1 0.038




5.3 The Square Potential Well
(x)
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One-dimensional square well of depth V|, and range a.

This potential has depth ¥, and range a. Suppose that the particle is incident
upon the well from the left. Let us divide the whole space into three regions:
Region I (x < 0), Region II (0 < x < a) and Region III (x > a). In the external
regions I and III the particle is free and so the time independent Schrédinger
equation is

h? d*y(x)
—— =E
2m  dx? v
2
or d;’ﬁ“ L Ry =0, B=2"E --(5.44)
X -
In the interior region II. the Schrédinger equation is
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Solving Equations (5.44) and (5.45), we obtain the physically acceptable wave function
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In order to obtain the reflection and transmission coefficients, we note that the present problem
of scattering by a potential well is mathematically similar to the scattering by a potential barrier.
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